Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(13): e2314261121, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38513094

RESUMO

By releasing specialized metabolites, plants modify their environment. Whether and how specialized metabolites protect plants against toxic levels of trace elements is not well understood. We evaluated whether benzoxazinoids, which are released into the soil by major cereals, can confer protection against arsenic toxicity. Benzoxazinoid-producing maize plants performed better in arsenic-contaminated soils than benzoxazinoid-deficient mutants in the greenhouse and the field. Adding benzoxazinoids to the soil restored the protective effect, and the effect persisted to the next crop generation via positive plant-soil feedback. Arsenate levels in the soil and total arsenic levels in the roots were lower in the presence of benzoxazinoids. Thus, the protective effect of benzoxazinoids is likely soil-mediated and includes changes in soil arsenic speciation and root accumulation. We conclude that exuded specialized metabolites can enhance protection against toxic trace elements via soil-mediated processes and may thereby stabilize crop productivity in polluted agroecosystems.


Assuntos
Arsênio , Poluentes do Solo , Oligoelementos , Arsênio/metabolismo , Oligoelementos/metabolismo , Zea mays/genética , Zea mays/metabolismo , Benzoxazinas/metabolismo , Plantas/metabolismo , Solo , Poluentes do Solo/análise , Raízes de Plantas/metabolismo
2.
New Phytol ; 237(3): 780-792, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35986650

RESUMO

Root hairs and soil water content are crucial in controlling the release and diffusion of root exudates and shaping profiles of biochemical properties in the rhizosphere. But whether root hairs can offset the negative impacts of drought on microbial activity remains unknown. Soil zymography, 14 C imaging and neutron radiography were combined to identify how root hairs and soil moisture affect rhizosphere biochemical properties. To achieve this, we cultivated two maize genotypes (wild-type and root-hair-defective rth3 mutant) under ambient and drought conditions. Root hairs and optimal soil moisture increased hotspot area, rhizosphere extent and kinetic parameters (Vmax and Km ) of ß-glucosidase activities. Drought enlarged the rhizosphere extent of root exudates and water content. Colocalization analysis showed that enzymatic hotspots were more colocalized with root exudate hotspots under optimal moisture, whereas they showed higher dependency on water hotspots when soil water and carbon were scarce. We conclude that root hairs are essential in adapting rhizosphere properties under drought to maintain plant nutrition when a continuous mass flow of water transporting nutrients to the root is interrupted. In the rhizosphere, soil water was more important than root exudates for hydrolytic enzyme activities under water and carbon colimitation.


Assuntos
Secas , Rizosfera , Água/análise , Raízes de Plantas/genética , Solo/química , Carbono , Microbiologia do Solo
3.
Nat Commun ; 13(1): 2681, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35562338

RESUMO

The Tibetan Plateau's Kobresia pastures store 2.5% of the world's soil organic carbon (SOC). Climate change and overgrazing render their topsoils vulnerable to degradation, with SOC stocks declining by 42% and nitrogen (N) by 33% at severely degraded sites. We resolved these losses into erosion accounting for two-thirds, and decreased carbon (C) input and increased SOC mineralization accounting for the other third, and confirmed these results by comparison with a meta-analysis of 594 observations. The microbial community responded to the degradation through altered taxonomic composition and enzymatic activities. Hydrolytic enzyme activities were reduced, while degradation of the remaining recalcitrant soil organic matter by oxidative enzymes was accelerated, demonstrating a severe shift in microbial functioning. This may irreversibly alter the world´s largest alpine pastoral ecosystem by diminishing its C sink function and nutrient cycling dynamics, negatively impacting local food security, regional water quality and climate.


Assuntos
Pradaria , Microbiota , Carbono/análise , Ecossistema , Nitrogênio/análise , Solo , Microbiologia do Solo , Tibet
4.
Biogeochemistry ; 158(1): 39-72, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35221401

RESUMO

Sustainable forest management requires understanding of ecosystem phosphorus (P) cycling. Lang et al. (2017) [Biogeochemistry, https://doi.org/10.1007/s10533-017-0375-0] introduced the concept of P-acquiring vs. P-recycling nutrition strategies for European beech (Fagus sylvatica L.) forests on silicate parent material, and demonstrated a change from P-acquiring to P-recycling nutrition from P-rich to P-poor sites. The present study extends this silicate rock-based assessment to forest sites with soils formed from carbonate bedrock. For all sites, it presents a large set of general soil and bedrock chemistry data. It thoroughly describes the soil P status and generates a comprehensive concept on forest ecosystem P nutrition covering the majority of Central European forest soils. For this purpose, an Ecosystem P Nutrition Index (ENI P ) was developed, which enabled the comparison of forest P nutrition strategies at the carbonate sites in our study among each other and also with those of the silicate sites investigated by Lang et al. (2017). The P status of forest soils on carbonate substrates was characterized by low soil P stocks and a large fraction of organic Ca-bound P (probably largely Ca phytate) during early stages of pedogenesis. Soil P stocks, particularly those in the mineral soil and of inorganic P forms, including Al- and Fe-bound P, became more abundant with progressing pedogenesis and accumulation of carbonate rock dissolution residue. Phosphorus-rich impure, silicate-enriched carbonate bedrock promoted the accumulation of dissolution residue and supported larger soil P stocks, mainly bound to Fe and Al minerals. In carbonate-derived soils, only low P amounts were bioavailable during early stages of pedogenesis, and, similar to P-poor silicate sites, P nutrition of beech forests depended on tight (re)cycling of P bound in forest floor soil organic matter (SOM). In contrast to P-poor silicate sites, where the ecosystem P nutrition strategy is direct biotic recycling of SOM-bound organic P, recycling during early stages of pedogenesis on carbonate substrates also involves the dissolution of stable Ca-Porg precipitates formed from phosphate released during SOM decomposition. In contrast to silicate sites, progressing pedogenesis and accumulation of P-enriched carbonate bedrock dissolution residue at the carbonate sites promote again P-acquiring mechanisms for ecosystem P nutrition. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10533-021-00884-7.

5.
Front Microbiol ; 12: 625697, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34777265

RESUMO

In this review, we introduce microbially-mediated soil processes, players, their functional traits, and their links to processes at biogeochemical interfaces [e.g., rhizosphere, detritusphere, (bio)-pores, and aggregate surfaces]. A conceptual view emphasizes the central role of the rhizosphere in interactions with other biogeochemical interfaces, considering biotic and abiotic dynamic drivers. We discuss the applicability of three groups of traits based on microbial physiology, activity state, and genomic functional traits to reflect microbial growth in soil. The sensitivity and credibility of modern molecular approaches to estimate microbial-specific growth rates require further development. A link between functional traits determined by physiological (e.g., respiration, biomarkers) and genomic (e.g., genome size, number of ribosomal gene copies per genome, expression of catabolic versus biosynthetic genes) approaches is strongly affected by environmental conditions such as carbon, nutrient availability, and ecosystem type. Therefore, we address the role of soil physico-chemical conditions and trophic interactions as drivers of microbially-mediated soil processes at relevant scales for process localization. The strengths and weaknesses of current approaches (destructive, non-destructive, and predictive) for assessing process localization and the corresponding estimates of process rates are linked to the challenges for modeling microbially-mediated processes in heterogeneous soil microhabitats. Finally, we introduce a conceptual self-regulatory mechanism based on the flexible structure of active microbial communities. Microbial taxa best suited to each successional stage of substrate decomposition become dominant and alter the community structure. The rates of decomposition of organic compounds, therefore, are dependent on the functional traits of dominant taxa and microbial strategies, which are selected and driven by the local environment.

6.
J Labelled Comp Radiopharm ; 64(10): 385-402, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34157793

RESUMO

13 C-labelled ω-hydroxy-carboxylic acids HO213 C-(CH2 )n -CH2 OH or HO2 C-(CH2 )n -13 CH2 OH (n = 12, 16, 20, 28) with 13 C labels selectively introduced either at the carboxy group or at the primary alcohol function at the end of the hydrocarbon chain have been synthesized. Different synthetic strategies had to be applied depending on the position of the label, the chain length of the respective synthetic target and due to economic considerations. 13 C labels in general were introduced by nucleophilic substitution of a suitable leaving group with labelled potassium cyanide and subsequent hydrolysis of the nitriles to produce the corresponding labelled carboxy functions, which may also be reduced to give the labelled primary alcohol group. All new compounds are characterized by GC/MS, IR and NMR methods as well as by elemental analysis.


Assuntos
Isótopos de Carbono/química , Ácidos Carboxílicos/química , Poliésteres/síntese química
7.
J Labelled Comp Radiopharm ; 64(1): 14-29, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33063895

RESUMO

13 C-labeled dicarboxylic acids HO213 C-(CH2 )n -13 CO2 H (n = 10, 12, 14, 16, 18, 20, 22, 24, 26, 28) have been synthesized as internal standards for LC-MS and GC-MS analysis of cutin and suberin monomer degradation by soil-based microorganisms. Different synthetic strategies had to be applied depending on the chain length of the respective synthetic target and because of economic considerations. 13 C-labels were introduced by nucleophilic substitution of a suitable leaving group with labelled potassium cyanide and subsequent hydrolysis of the nitriles to produce the corresponding dicarboxylic acids. All new compounds are characterized by GC/MS, IR, and NMR methods as well as by elemental analysis.


Assuntos
Lipídeos , Lipídeos de Membrana , Dióxido de Carbono , Ácidos Dicarboxílicos , Espectrometria de Massas
8.
Sci Total Environ ; 648: 754-771, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30134213

RESUMO

With 450,000 km2Kobresia (syn. Carex) pygmaea dominated pastures in the eastern Tibetan highlands are the world's largest pastoral alpine ecosystem forming a durable turf cover at 3000-6000 m a.s.l. Kobresia's resilience and competitiveness is based on dwarf habit, predominantly below-ground allocation of photo assimilates, mixture of seed production and clonal growth, and high genetic diversity. Kobresia growth is co-limited by livestock-mediated nutrient withdrawal and, in the drier parts of the plateau, low rainfall during the short and cold growing season. Overstocking has caused pasture degradation and soil deterioration over most parts of the Tibetan highlands and is the basis for this man-made ecosystem. Natural autocyclic processes of turf destruction and soil erosion are initiated through polygonal turf cover cracking, and accelerated by soil-dwelling endemic small mammals in the absence of predators. The major consequences of vegetation cover deterioration include the release of large amounts of C, earlier diurnal formation of clouds, and decreased surface temperatures. These effects decrease the recovery potential of Kobresia pastures and make them more vulnerable to anthropogenic pressure and climate change. Traditional migratory rangeland management was sustainable over millennia, and possibly still offers the best strategy to conserve and possibly increase C stocks in the Kobresia turf.

9.
Chemosphere ; 145: 163-73, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26688253

RESUMO

The aim of this study was to analyze the environmental fate of the fungicide boscalid in a sandy soil. Boscalid was applied in spring 2010/11 to a cropland site in western Germany. Three years after second application 65 undisturbed soil samples were taken. Boscalid was extracted using accelerated solvent extraction (ASE). Boscalid contents in the plough horizon ranged between 0.12 and 0.53 with a field mean of 0.20 ± 0.09 µg kg(-1). These contents were considerably lower compared to calculation using literature DT50 values, whereby a concentration of 16.89 µg kg(-1) was expected assuming a literature DT50 value of 345 days. Therefore, the measured field boscalid concentration only yields 1.2% of the expected value. To test whether the unknown extraction efficiency, losses from spray drift and interception can explain the mismatch between calculated and measured concentrations all these uncertainties were taken into account into calculations, but field concentrations and DT50 were still lower as expected. Leaching to deeper horizons was also studied but could not explain the discrepancy either. Moreover, a short-term incubation experiment using (14)C labelled boscalid revealed also shorter DT50 values of 297-337 compared to the 345 days taken from literature. However, this DT50 value is still considerably larger compared to the 104-224 days that were calculated based on the field experiment. Our results indicate that boscalid dissipation under field conditions is much faster at agricultural sites with sandy soil type as expected from laboratory incubation experiments.


Assuntos
Compostos de Bifenilo/análise , Fungicidas Industriais/análise , Niacinamida/análogos & derivados , Poluentes do Solo/análise , Alemanha , Meia-Vida , Niacinamida/análise , Solo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...